Badania rozkładu pola temperatury podczas toczenia stali AMS 5643

Research concerning distribution of temperature field in AMS 5643 steel turning

ŁUKASZ ŚLUSARCZYK BOGDAN SŁODKI *

W artykule opisano badania pola temperatury w strefie obróbki podczas toczenia stali AMS 5643 z zastosowaniem kamery termowizyjnej FLIR SC 620. SŁOWA KLUCZOWE: termowizja, obróbka skrawaniem

The paper presents research concerning temperature field in cutting zone during AMS 5643 steel face turning with the help of a thermal imaging camera. KEYWORDS: thermovision, machining

Współczesne wymagania związane z zastosowaniem obrabiarek dotyczą wysokiej wydajności i jakości obróbki [1]. Realizacja tych wymagań związana jest z właściwym doborem warunków obróbki i poprawną pracą narzędzia skrawającego. Wysoka temperatura występująca w strefie skrawania wpływa na trwałość narzędzia, a w konsekwencji na koszty obróbki [2]. W badaniach laboratoryjnych strefy skrawania wiele miejsca poświeca się pomiarom temperatury [3]. Obecny rozwój w dziedzinie bezkontaktowych pomiarów temperatury przyczynił się do zastosowania urządzeń termowizyjnych w badaniach rozkładu pola temperatury w strefie skrawania [4, 5]. Na podstawie uzyskanych wyników dobiera się warunki obróbki w taki sposób, by zachować właściwości skrawne materiału narzędziowego i osiągnąć określoną dokładność obróbki oraz przewidzieć zużycie ostrza [6].

Badania laboratoryjne

W ramach badań laboratoryjnych przeprowadzono i zarejestrowano kamerą termowizyjną operację toczenia czołowego rowków. Celem badań było określenie możliwości zastosowania kamery termowizyjnej do wyznaczenia temperatury w strefie obróbki, a także określenie wpływu parametrów skrawania na wartość temperatury maksymalnej.

Próby wykonano na wałku ze stali nierdzewnej AMS 5643. Skład chemiczny stali PN/EN 10088-1:2005 przedstawiono w tabl. I.

TABLICA I. Skład chemiczny stopu AMS 5643

%	Min.	Max.
С	-	0,070
Si	-	0,070
Mn	-	1,500
Р	-	0,040
S	-	0,015
Cr	15,00	17,00
Мо	-	0,60
Ni	3,00	5,00
Cu	3,00	5,00

^{*} Dr inż. Łukasz Ślusarczyk (slusarczyk@mech.pk.edu.pl), dr hab. inż. Bogdan Słodki (slodki@mech.pk.edu.pl) – Instytut Technologii Maszyn i Automatyzacji Produkcji, Wydział Mechaniczny, Politechnika Krakowska

DOI: 10.17814/mechanik.2016.10.403

Na rys. 1 przedstawiono stanowisko badawcze wykorzystane w badaniach. Kamera termowizyjna została umieszczona nad strefą obróbki, co umożliwiło rejestrację temperatury wióra od strony powierzchni natarcia.

Rys. 1. Stanowisko badawcze do rejestracji termogramów 1 – kamera termowizyjna FLIR SC 620, 2 – tokarka precyzyjna Knuth Masterturm 400, 3 – komputer z oprogramowaniem ThermaCam Researcher 2.9

TABLICA II. Parametry konfiguracyjne kamery termowizyjnej FLIR SC620

S	Temperatura otoczenia	22°C
	Emisyjność obiektu	0,45
	Wilgotność względna	37%
	Odległość pomiaru	1 m
	Częstotliwość rejestracji	30 kl/s
	Ogniskowa obiektywu	36 mm

Próby skrawania wykonano narzędziem firmy Kennametal płytką A3G0500M05P04DF z węglików spiekanych KC5010, z powłoką TiAIN (rys. 2*a*), zamocowaną w oprawce A3SAR2520M0530-075-100 (rys. 2*b*).

Rys. 2. Narzędzie firmy Kennametal wykorzystane w badaniach: a) płytka skrawająca, b) płytka skrawająca zamocowana w oprawce

Na pierwszym etapie badań wykonano próby toczenia rowków dla głębokości skrawania $a_p = 5 \text{ mm}$ (pełna szerokość płytki). Z określonych przedziałów zmienności parametrów skrawania $v_c = 90 \div 120 \text{ m/min}, f = 0.038 \div 0.153 \text{ mm/obr},$ stosując metodę Taguchiego – wyznaczono 8 prób (tabl. III).

TABLICA III.	Parametry	skrawania	podczas	toczenia	rowków	dla
a _p = 5 mm						

Nr próby	v _c [m/min]	f [mm/obr]
1	90	0,038
2	120	0,038
3	90	0,077
4	120	0,077
5	90	0,115
6	120	0,115
7	90	0,153
8	120	0,153

Podczas każdej próby za pomocą kamery termowizyjnej rejestrowano rozkład temperatury. Kamera termowizyjna wykorzystana w badaniach daje możliwość rejestracji kolorowych obrazów o rozdzielczości 640 x 480 pikseli, co pozwala uzyskać czytelny obraz pola temperatury w strefie obróbki. Na rys. 3 przedstawiono przykładowy obraz termograficzny zarejestrowany w próbie 4 (widok z góry).

Rys. 3. Przykładowy obraz termograficzny zarejestrowany w próbie 4

Analizę otrzymanych obrazów wykonano w aplikacji ThermaCam Researcher 2.9. Dla każdej próby wyznaczono przebieg temperatury maksymalnej występującej w strefie obróbki. Na rys. 4 przedstawiono przykładowy przebieg temperatury maksymalnej dla próby nr 1 oraz fragment analizy poklatkowej.

Rys. 4. Przebieg temperatury maksymalnej dla próby nr 1 oraz fragment analizy poklatkowej

Na rys. 5 przedstawiono zależność pomiędzy temperaturą maksymalną a posuwem, dla dwóch prędkości skrawania v_c = 90 m/min oraz v_c = 120 m/min.

Rys. 5. Zależność pomiędzy temperaturą maksymalną a posuwem dla dwóch prędkości skrawania: v_c = 90 m/min oraz v_c = 120 m/min

Przy toczeniu czołowym rowków na wałku ze stali nierdzewnej AMS 5643 mniejsze wartości temperatury maksymalnej w strefie obróbki zaobserwowano przy posuwie f = 0,077 mm/obr, zarówno dla $v_c = 90$ m/min, jak i dla $v_c =$ 120 m/min. Stwierdzono wzrost temperatury maksymalnej dla większych wartości posuwu przy prędkości skrawania $v_c = 120$ m/min. Zmiana wartości posuwu w zakresie $f = 0,038\div0,153$ mm/obr powoduje zmianę temperatury maksymalnej o ok. 50 °C dla $v_c = 90$ m/min, oraz ok. 120 °C dla $v_c = 120$ m/min.

W drugim etapie badań wykonano 8 prób toczenia rowków dla różnych głębokości skrawania $a_p = 0,13$ mm oraz $a_p = 0,25$ mm. W tabl. IV przedstawiono parametry skrawania przyjęte podczas badań.

TABLICA IV. Parar	netry skrawania	podczas tocz	enia rowków	dla
a _p = 0,13 mm i a _p :	= 0,25 mm			

Nr próby	v _c , m/min	<i>f</i> , mm/obr	a _p , mm	
1	90	0,038	0,13	
2	120	0,038	0,25	
3	90	0,077	0,13	
4	120	0,077	0,25	
5	90	0,115	0,25	
6	120	0,115	0,13	
7	90	0,153	0,25	
8	120	0,153	0,13	

W tabl. V zestawiono uzyskane wartości temperatury maksymalnej w strefie obróbki.

TABLICA V. Wartości temperatury maksymalnej podczas toczer	nia
rowków dla a_p = 0,13 mm i a_p = 0,25 mm	

Nr. próby	. 1	2	3	4	5	6	7	8
T _{max} , °C	266,5	289,3	357,2	450,5	309,2	353,0	288,3	401,6

Na podstawie uzyskanych wyników dla dwóch różnych głębokości skrawania, w zakresie posuwu $f = 0,038 \div 0,153$ mm/obr, większe wartości temperatury maksymalnej uzyskano dla $v_c = 120$ m/min (próby 2, 4, 6, 8). Nie stwierdzono natomiast wyraźnego wpływu głębokości skrawania na wzrost temperatury maksymalnej w strefie skrawania.

Wnioski

 Sposób zamocowania kamery nad strefą obróbki umożliwił określanie maksymalnej temperatury wióra spływającego po powierzchni natarcia płytki w pewnej odległości od krawędzi skrawającej.

 Utrudnieniem w analizie uzyskanych termogramów jest niekorzystny, kłębiący się wiór.

 Wyznaczone wartości temperatury maksymalnej w strefie obróbki należy traktować jako przybliżone.

Badania przeprowadzono w ramach programu IN-NOLOT, umowa numer INNOLOT/I/9/NCBR/2013 "Zaawansowane techniki wytwarzania kadłuba silników lotniczych", współfinansowanego przez Narodowe Centrum Badań i Rozwoju.

LITERATURA

- 1. Grzesik W. "Podstawy skrawania materiałow metalowych". WNT, Warszawa, 2010.
- Dinca C., Lazoglu I., Serpenguzel A. "Analysis of thermal fields in orthogonal machining with infrared imaging". Journal of Materials Processing Technology. No. 198 (2008): pp. 147÷154.
- Jaspers S.P.F.C., Dautzenberg J.H., Taminiau D.A. "Temperature measurement in orthogonal metal cutting". *Int. J Advanced Manufacturing Technology*. Vol. 14, 1998: pp. 7÷12.
- Stephenson D.A., Ali A. "Tool temperatures in interrupted metal cutting". J. Eng. Ind. Vol. 114, 1992, pp. 127÷136.
- Ślusarczyk Ł. "Badanie toczenia elementów cienkościennych studium przypadku". Mechanik. Nr 8–9 (2015): s. 542÷550.
- Kiszka P., Grzesik W., Jöel R. "Pomiar rozkładu temperatury w strefie skrawania z pomocą kamery termowizyjnej". *Mechanik*. Nr 3 (2016): s. 197÷200.