Naprężenia własne w warstwie wierzchniej po toczeniu wykończeniowym stopu tytanu na osnowie fazy międzymetalicznej TiAl(γ)

Surface residual stresses in finish turning of gamma titanium alloy TiAl(γ)

KRZYSZTOF KRUPA WITOLD HABRAT PAWEŁ KOCUREK JAN SIENIAWSKI *

W pracy przedstawiono wpływ warunków toczenia wykończeniowego stopu tytanu na osnowie fazy międzymetalicznej TiAl(γ) na naprężenia własne w warstwie wierzchniej. Badania prowadzono dla wkładek ostrzowych typu C z węglika spiekanego. Określono wpływ parametrów skrawania oraz zużycia ostrza narzędzia skrawającego na naprężenia własne w warstwie wierzchniej. Badania realizowano w zakresie parametrów skrawania (prędkość skrawania $v_c = 40 - 70$ m/min, posuw $f = 0,05\div0,15$ mm/obr, głębokość $a_p = 0,15\div0,35$ mm)

SŁOWA KLUCZOWE: stop TiAl(γ), naprężenia własne, toczenie wykończeniowe

This paper presents presents the influence of finish turning conditions of gamma titanium alloys TiAl(γ) on the surface residual stresses. The experimental tests were carried out with use of type C cutting inserts made of cemented carbide. Effects of machining parameters and cutting tool wear on the surface residual stresses were analyzed. The research was performed in a range of cutting parameters (cutting speed v_c=40-70m/min, feed rate f=0,05÷0,15mm/rev and depth of cut a_p=0,15÷0,35mm). KEYWORDS: TiAl(γ) alloy, residua stresses, finish turning

Stopy tytanu TiAl(y) ze względu na dobre właściwości mechaniczne w temperaturze do 900 °C są wykorzystywane na elementy stacjonarne i wirujące silników lotniczych przede wszystkim łopatki i tarcze turbiny niskiego ciśnienia oraz łopatki sprężarki wysokiego ciśnienia [1, 2]. Wytwarzanie elementów jest szczególnie trudne ze względu na małą skrawalność tych stopów. Spowodowana jest ona unikalnymi właściwościami fizycznymi i chemicznymi tych stopów, m.in. małą przewodnością cieplną i ciągliwością, silnie umacnia się przez gniot, dużą twardością i kruchością oraz aktywnością chemiczną [2÷4]. Dlatego często w procesie skrawania powstają uszkodzenia warstwy wierzchniej – wyrwania [2]. Jakość powierzchni obrabianej i stan warstwy wierzchniej wpływa w znacznym stopniu na właściwości użytkowe wytwarzanych elementów, od których wymaga się dużej trwałości i niezawodności [5].

Odkształcenie warstwy wierzchniej prowadzi do zmiany wartości naprężeń własnych. Dotyczy to materiałów silnie umacniających się przez zgniot. Do grupy tych materiałów należy tytan i jego stopy. Przed ostrzem narzędzia skrawającego w warstwie wierzchniej powstają naprężenia

DOI: 10.17814/mechanik.2016.10.434

rozciągające, natomiast po przejściu ostrza – naprężenia ściskające [6]. Stwierdzono, że wartość naprężeń własnych zależy od geometrii ostrza oraz parametrów skrawania.

Odkształcenie sprężyste w warstwie wierzchniej jest ważnym kryterium doboru tych materiałów do pracy w warunkach zmęczenia. Stwierdzono, że wytworzenie naprężeń ściskających w warstwie wierzchniej elementów zwiększa odporność na pełzanie i wytrzymałość zmęczeniową – ogranicza tworzenie się mikropęknięć w warunkach zmęczenia [7÷9].

Materiał i metodyka badań

W procesie toczenia wykończeniowego stosowano stop tytanu na osnowie fazy międzymetalicznej TiAl(γ) o składzie chemicznym: Ti – 49,6%, Al – 45%, Nb – 5%, B – 0,2%, C – 0,2% mas. w postaci pręta o średnicy Ø = 70 mm (rys. 1) w stanie zrekrystalizowanym.

Rys. 1. Mikrostruktura stopu Ti-45AI-5 Nb-0,2 B-0,2 C

Proces wzdłużnego toczenia wykończeniowego prowadzono z użyciem tokarki NEF 600 z układem sterowania Fanuc 210is. Stosowano wkładki ostrzowe CNMG 120408 – SF o promieniu naroża $r_{\varepsilon} = 0,8$ mm i promieniu zaokrąglenia krawędzi skrawającej $r_n = 0,04$ mm wykonane z węglika spiekanego (1115) z powłoką TiAlN wytworzoną metodą PVD. Wkładki ostrzowe były mocowane w oprawce tokarskiej DCLNL 2525M12. Przyjęto parametry skrawania: w zakresie wartości: $v_c = 30+70$ m/min, $a_p = 0,15+0,35$ mm, f = 0,05+0,15 mm/obr. Pomiary odkształcenia sprężystego materiału warstwy wierzchniej prowadzono w kierunku posuwu na głębokości 4,9+5,5 µm od powierzchni obrabianej.

Stopień odkształcenia sprężystego sieci krystalicznej określono za pomocą dyfraktometru rentgenowskiego Proto iXRD firmy Proto Manufacturing. Stosowano lampę z anodą miedzianą i promieniowanie charakterystyczne CuK_a o długości fali λ = 0,154 nm, średnicy 2 mm oraz na-

^{*} Dr inż. Krzysztof Krupa (krupa@prz.edu.pl) – Uczelniane Laboratorium Badań Materiałów dla Przemysłu Lotniczego Politechniki Rzeszowskiej; dr inż. Witold Habrat (witekhab@prz.edu.pl) – Katedra Technik Wytwarzania i Automatyzacji, Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej; mgr inż. Paweł Kocurek (kocurek@prz.edu.pl), prof. dr hab. inż. Jan Sieniawski (jansien@prz.edu.pl) – Katedra Materiałoznawstwa, Wydział Budowy Maszyn i Lotnictwa Politechniki Rzeszowskiej

pięcie anodowe 20 kV i prąd anodowy 4 mA. Do obliczenia wartości naprężeń własnych przyjęto metodę sin² Ψ [9]. Pomiary odkształcenia sprężystego w obrabianej warstwie wierzchniej prowadzono dla linii dyfrakcyjnej {422} i kąta 2 θ = 141,44° [10, 11]. Odkształcenie sieci krystalicznej wyznaczono dla stałych wartości kąta Ψ w przedziale od -30° do 30° wg równania (1):

$$\mathcal{E}_{\Phi\Psi} = \frac{d_{\Phi\Psi} - d_0}{d_0} \tag{1}$$

Odległość międzypłaszczyznową d_0 w strukturze materiału dla naprężenia $\sigma = 0$ MPa zastąpiono wyznaczoną odległością międzypłaszczyznową dla kąta $\Psi = 0^{\circ}$ [12]. Błąd względny obliczeń wynikający z przyjętego przybliżenia wynosi 0,1% [9]. Z zależności liniowej $\varepsilon \phi \psi = f(\sin^2 \Psi)$ wyznaczono wartość współczynnika nachylenia prostej i obliczono wartość naprężenia wg równania (2):

$$\sigma_{\emptyset} = \left(\frac{E}{1+\nu}\right)_{hkl} \frac{1}{d_0} \left(\frac{\partial d_{\Phi\Psi}}{\partial sin^2\Psi}\right) \tag{2}$$

W prowadzonych obliczeniach naprężeń własnych przyjęto wartości współczynnika Poissona = 0,23 i modułu Younga *E* = 170 GPa [13].

Wyniki badań i ich analiza

Pomiary odkształcenia sprężystego metodą rentgenowską umożliwiły określenie wpływu parametrów skrawania i zużycia ostrza narzędzia skrawającego na wartość naprężeń własnych w warstwie wierzchniej powierzchni obrabianej. Stwierdzono występowanie naprężeń ściskających oraz największego wpływu posuwu na ich wartość (rys. 2). Zwiększenie wartości posuwu od 0,05 do 0,15 mm/obr podczas toczenia nową (VB_B – początkowe) wkładką ostrzową wpływa na zwiększenie wartości naprężeń ściskających w warstwie wierzchniej od -380 do -786 MPa.

Rys. 2. Wartości naprężeń własnych w warstwie wierzchniej stopu Ti-45 Al-5 Nb-0,2 B-0,2 C po procesie toczenia w zależności od parametrów skrawania a) v_c = 55 m/min, a_p = 0,25 mm, b) v_c = 55 m/min, f = 0,1 mm, c) a_p = 0,25 mm, f = 0,1 mm

Zwiększenie głębokości skrawania od 0,15 do 0,35 mm powoduje nieznaczne zwiększenie wartości naprężeń ściskających od -427 do -437 MPa. Natomiast zwiększenie prędkości skrawania od 40 do 70 m/min powoduje zmniejszenie wartości naprężeń ściskających od -598 do -510 MPa. Może to być spowodowane wyższą temperaturą w strefie skrawania, zwiększającą się wraz ze wzrostem prędkości skrawania – zwiększa się udział odkształcenia plastycznego materiału warstwy wierzchniej.

Stwierdzono, że zużycie wkładki ostrzowej CNMG 120408-SF 1115 podczas toczenia wykończeniowego niezależnie od parametrów skrawania wpływa na zwiększenie naprężeń ściskających. Na przykład dla narzędzia nowego i parametrów skrawania: $a_p = 0,25$ mm, f = 0,05 mm/obr, $v_c = 50$ m/min naprężenia własne w warstwie wierzchniej powierzchni obrabianej przyjmują wartość -427 MPa. Natomiast dla tych samych parametrów skrawania i wkładki zużytej (*VB_{Bmax}* ≈ 0,3 mm) naprężenia własne przyjmują wartość -791 MPa

Podsumowanie

Naprężenia własne w warstwie wierzchniej na głębokości ok. 5 µm od powierzchni – w kierunku posuwu podczas toczenia wykończeniowego stopu Ti-45AI-5Nb-0,2B-0,2C z zastosowaniem nowej (VB_B – początkowe) wkładki ostrzowej CNMG 120408-SF 1115 dla przyjętego zakresu wartości parametrów skrawania przyjmują wartości ujemne z zakresu od -380 do -786 MPa. Zwiększenie wartości posuwu i głębokości w przyjętym zakresie parametrów skrawania powoduje zwiększenie wartości naprężeń ściskających odpowiednio o 107 % oraz 2,3%. Natomiast zwiększenie prędkości skrawania powoduje nieznaczne zmniejszenie wartości naprężeń ściskających. Ustalono również zwiększenie wartości naprężeń ściskających o 31÷89% dla ostrza zużytego ($VB_{Bmax} \approx 0,3$ mm).

LITERATURA

- Baur H., Wortberg D.B. "Titanium Aluminides fo passenger vehicles". *Materials Science and Engineering*. A329-331 (2002): pp. 582÷588.
- Mantle A.L., Aspinwall D.K. "Temperature measurement and tool wear when turning gamma TiAl intermetallic". Proc. of the 13th Conference of the Irish Manufacturing Committee. Limerick (1996): pp. 427÷436.
- 3. Oczoś K.E., Kawalec A. "Kształtowanie metali lekkich". Warszawa: PWN, 2012.
- Dimiduk D.M. "Gamma titanium aluminide alloys an assessment within the competition of aerospace structural materials". *Materials Science and Engineering*. A263 (1999): pp. 281÷288.
- Sharman A.R.C., Aspinwall D.K., Dewes R.C., Clifton D., Bowen P. "The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide". *International Journal of Machine Tools* & *Manufacture*. Vol. 41 (2001): pp. 1681÷1685.
- Outeiro J.C., Pina J.C., Saoubi R.M., Pusavec F., Jawahir I.S. "Analysis of residual stresses induced by dry turning of difficult-to-machine materials". *CIRP Annals Manufacturing Technology*. Vol. 57 (2008): pp. 77÷80.
- Martinez S.A., Sathish S., Blodgett M.P., Shepard M.J. "Residual Stress Distribution on Surface-treated Ti-6AI-4V by X-ray Diffraction". *Experimental Mechanics*. Vol. 43 (2003): pp. 141+147.
- Skrzypek S.J. "Nowe możliwości pomiaru makronaprężeń własnych materiałów przy zastosowaniu dyfrakcji promieniowania X w geometrii stałego kąta padania". Kraków: Wydawnictwa AGH, 2002.
- Bonarski J.T. "Pomiar i wykorzystanie teksturowo-naprężeniowej charakterystyki mikrostruktury w diagnostyce materiałów". Kraków: Instytut Metalurgii i Inżynierii Materiałowej PAN, 2013.
- Kim Y.-W. "Ordered Intermetallic Alloys, Part III: Gamma Titanium Aluminides". *Journal of Metals*. Vol. 46 (1994): pp. 30÷40.
- Bystrzycki J., Varin R.A., Bojar Z. "Postępy w badaniach stopów na bazie uporządkowanych faz międzymetalicznych z udziałem aluminium". *Inżynieria Materiałowa*. Vol. 5 (1996): s. 137÷149.
- Kocurek P., Capek J., Nawrocki J., Motyka M., Sieniawski J. "Analiza stanu naprężeń własnych w odlewach łopatek turbiny z nadstopu niklu Inconel 713C". *Hutnik-WH.* T. 83, 5 (2016): s. 219÷222.
- Sharman A.R.C., Aspinwall D.K., Dewes R.C., Clifton D., Bowen P. "The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide". *International Journal of Machine Tools & Manufacture*. Vol. 41 (2001): pp. 1681÷1685.