Selected mechanical properties of MED610 medical resin used in PolyJet Matrix additive technology
Wybrane właściwości mechaniczne medycznej żywicy MED610 stosowanej w technologii przyrostowej PolyJet Matrix *
Mechanik nr 03/2024 - Druk 3D
ABSTRACT: This paper presents the results of static strength tests carried out, i.e. tensile, bending and compression tests. The tests were performed on the basis of ISO 527, ISO 178 and ISO 604 standards. The study used a photo-curable resin with the trade name MED610, which meets a number of biocompatibility requirements and can be used for medical applications. PolyJet Matrix 3D printing technology was used to produce the test samples. The study showed a clear anisotropy of mechanical properties due to the printing orientation, particularly noticeable for the tensile and bending tests.
KEYWORDS: MED610, PJM, mechanical properties, 3D printing
STRESZCZENIE: W artykule przedstawiono wyniki przeprowadzonych statycznych prób wytrzymałościowych, tj.: próby rozciągania, zginania i ściskania. Badania wykonano w oparciu o normy ISO 527, ISO 178 oraz ISO 604. W badaniu zastosowano żywicę fotoutwardzalną o nazwie handlowej MED610, która spełnia wiele wymagań dotyczących biokompatybilności i może być stosowana w aplikacjach medycznych. Do produkcji próbek wykorzystano technologię druku 3D PolyJet Matrix. Badanie wykazało wyraźną anizotropię właściwości mechanicznych, zauważalną zwłaszcza w testach rozciągania i zginania.
SŁOWA KLUCZOWE: MED610, PJM, właściwości mechaniczne, druk 3D
BIBLIOGRAFIA / BIBLIOGRAPHY:
[1]Elhadad A., Rosa-Sainz A., Cañete R., et al. “Applicationsand multidisciplinary perspective on 3D printing techniques: Recent developments and future trends”, Materials Science and Engineering: R: Reports. 156 (2023):1–44, https://doi.org/10.1016/j.mser.2023.100760.
[2]Szczygieł P. “Prototype of hand prosthesis componentsmanufactured with biocompatible material using Poly-Jet Matrix technology”. Mechanik. 7 (2022): 50–54,https://doi.org/10.17814/mechanik.2022.7.10.
[3]Zohdi N., Yang R. “Material Anisotropy in Additively Manufactured Polymers and Polymer Composites:A Review”. Polymers. 13, 9 (2021): 1–28 ,https://doi.org/10.3390/polym13193368.
[4]Farkas A.Z., Galatanu S.-V., Nagib R. “The Influence ofPrinting Layer Thickness and Orientation on the Mechanical Properties of DLP 3D-Printed Dental Resin”.Polymers. 15, 5 (2023): 1–14, https://doi.org/10.3390/polym15051113.
[5]Távara L., Madrigal C., Aranda M. T., et al. “Anisotropy and ageing effect on the mechanical behaviourof 3D-printed short carbon-fibre composite parts”.Composite Structures. 321 (2023): 1–13, https://doi.org/10.1016/j.compstruct.2023.117196.
[6]Park S.J., Park S.J., Son Y., et al. “Reducing anisotropyof a part fabricated by material extrusion via warmisostatic pressure (WIP) process”. Additive Manufacturing. 55 (2022): 1–12, https://doi.org/10.1016/j.addma.2022.102841.
[7]https://www.stratasys.com/siteassets/materials/materials-catalog/biocompatible/mds_pj_med610_0720a.pdf (access: 07.02.2024).
[8]https://www.sys-uk.com/wp-content/uploads/2016/01/MSDS-Clear-Bio-Compatible-MED610-English-US-1.pdf (access: 07.02.2024).
[9]https://www.sys-uk.com/wp-content/uploads/2016/01/MSDS-Objet-Support-Material-SUP705-English.pdf(access: 07.02.2024).
DOI: https://doi.org/10.17814/mechanik.2024.3.5
* Artykuł recenzowany