Sterowanie manipulatorem nasobnym w oparciu o sygnały EMG *
Control method of the wearable manipulator based on EMG signals
Mechanik nr 07/2018 - Różne
STRESZCZENIE: Integracja człowieka z egzoszkieletem – tak, aby poprawnie odzwierciedlał on zamiary użytkownika w zakresie ruchu kończyny górnej – wymaga zastosowania odpowiedniej metody sterowania, zawierającej algorytm wykrywania intencji. W artykule przedstawiono założenia dotyczące budowy egzoszkieletu kończyny górnej, a także proponowaną procedurę badawczą oraz wstępnie opracowane metody sterowania manipulatora wspomagającego, bazujące na analizie charakterystyki sygnału elektromiograficznego (EMG) oraz zastosowaniu sieci neuronowych.
SŁOWA KLUCZOWE: egzoszkielet, metoda sterowania, EMG
ABSTRACT: Human integration with the exoskeleton, so that it correctly reflects the intentions of the user, requires the use of an appropriate control method containing an intent detection algorithm. The article presents the assumptions concerning the construction of the upper limb exoskeleton, the preliminary research procedure and the pre-developed methods of controlling the assistance manipulator based on the analysis of the electromyographic signal (EMG) characteristics and the use of neural networks.
KEYWORDS: exoskeleton, control method, EMG
BIBLIOGRAFIA / BIBLIOGRAPHY:
- Yang C.J., Zhang J.F., Chen Y., Dong Y.M., Zhang Y. “A review of exoskeleton-type systems and their key technologies,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 222, 8 (2008): s.1599–1612.
- https://medical-dictionary.thefreedictionary.com/orthosis (dostęp 20.03.2018 r.).
- Stienen A.H.A., McPherson J.G., Schouten A.C., Dewald J.P.A. 2011. “The ACT-4D: a novel rehabilitation robot for the quantification of upper limb motor impairments following brain injury”. 2011 IEEE International Conference on Rehabilitation Robotics. DOI: 10.1109/ICORR.2011.5975460.
- Krebs H.I. et al. “Rehabilitation robotics: performance-based progressive robot-assisted therapy.” Autonomous Robots. 15.1 (2003): s. 7–20.
- Mao Ying, Sunil Kumar Agrawal. “Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation”. IEEE Transactions on Robotics. 28.4 (2012): s. 922–931.
- Frisoli A., Rocchi F., Marcheschi S., Dettori A., Salsedo F., Bergamasco M. “A new force-feedback arm exoskeleton for haptic interaction in virtual environments”. Proceedings of the First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005: s. 195–201.
- Russo D., Ambrosini E., Arrigoni S., Braghin F., Pedrocchi A. “Design and modeling of a joystick control scheme for an upper limb powered exoskeleton”. Proceedings of 14th Mediterranean Conference on Medical and Biological Engineering and Computing, 2016.
- Mikulski M.A. “Electromyogram control algorithms for the upper limb single-DOF powered exoskeleton”. Proceedings of 4th International Conference on Human System Interactions, 2011: s. 117–122.
- Lu Z., Tong K., Shin H., Sheng L., Zhou P. “Advanced myoelectric control for robotic hand-assisted training: outcome from a stroke patient”. Frontiers in Neurology. 8 (2017): s. 1–5.
- Venketsh V., Davis F.D. “A Theoretical extension of the technology acceptance model: four longitudinal field studies”. Management Science. 46, 2 (2000): s. 186–204.
- Brooke J. “Usability evaluation in industry”. London: Taylor and Francis, 1996.
DOI: https://doi.org/10.17814/mechanik.2018.7.90
* Artykuł recenzowany