ENG FB kontakt

23.11.2024

Strona główna Aktualności Wydarzenia Nowe kropki kwantowe zwiastują elektronikę operującą pojedynczymi atomami

Nowe kropki kwantowe zwiastują elektronikę operującą pojedynczymi atomami

13-06-2014

Struktury solotroniczne nowego typu, w tym pierwsze na świecie kropki kwantowe z pojedynczymi jonami kobaltu, wytworzono i zbadano na Wydziale Fizyki Uniwersytetu Warszawskiego. Materiały i pierwiastki użyte do budowy tych struktur pozwalają wskazać nowe kierunki rozwoju solotroniki – ekstremalnej elektroniki i spintroniki przyszłości, działającej dzięki operacjom przeprowadzanym na pojedynczych atomach.


Przekrój kropek kwantowych opracowanych, skonstruowanych i przetestowanych w Instytucie Fizyki Doświadczalnej Wydziału Fizyki Uniwersytetu Warszawskiego

Układy elektroniczne operujące na poszczególnych atomach wydają się naturalną konsekwencją postępującej miniaturyzacji. Zachowanie pojedynczych atomów można kontrolować już dziś, umieszczając je w specjalnych strukturach półprzewodnikowych. Tak powstają m.in. kropki kwantowe z pojedynczymi jonami magnetycznymi. W światowych laboratoriach były one znane tylko w dwóch odmianach. Fizykom z Instytutu Fizyki Doświadczalnej Wydziału Fizyki Uniwersytetu Warszawskiego (FUW) udało się jednak wytworzyć i przebadać dwa nowe rodzaje tych struktur. Materiały i pierwiastki użyte do ich budowy pozwalają przypuszczać, że w przyszłości sprzęt solotroniczny ma szansę się upowszechnić.

W laboratoriach FUW kropki kwantowe wytwarza się za pomocą epitaksji z wiązek molekularnych. Proces polega na precyzyjnym podgrzewaniu tygli z pierwiastkami umieszczonymi w komorze próżniowej. Pary pierwiastków osadzają się na próbce. Odpowiednio dobierając materiały i warunki, można spowodować, że osadzające się atomy zbiorą się w niewielkie skupiska – kropki kwantowe. W podobny sposób skraplająca się para wodna tworzy kropelki na hydrofobowych podłożach.

Gdy podczas osadzania kropek kwantowych do komory próżniowej wprowadzi się niewielką liczbę innych atomów, np. magnetycznych, część z nich wbuduje się w powstające układy. Po wyjęciu próbki można wtedy pod mikroskopem wyszukać te kropki kwantowe, w których jest dokładnie jeden atom magnetyczny, na dodatek umieszczony centralnie.

Atom o własnościach magnetycznych zaburza stany energetyczne elektronów kropki kwantowej, co wpływa na sposób jej oddziaływania ze światłem. Kropka kwantowa staje się wtedy detektorem stanów takiego atomu. Zależność funkcjonuje też w drugą stronę: zmieniając stany energetyczne elektronów w kropce kwantowej można wpływać na atom magnetyczny – wyjaśnia Michał Papaj, student FUW, który za pracę nad budową kropek kwantowych z pojedynczymi jonami kobaltu otrzymał w 2013 r. Złoty Medal Chemii w ogólnopolskim konkursie Instytutu Chemii Fizycznej PAN na najlepszą pracę licencjacką.

Najsilniejsze własności magnetyczne mają atomy manganu pozbawione dwóch elektronów (Mn2+). Dotąd osadzano je w kropkach kwantowych z tellurku kadmu (CdTe) lub arsenku indu. Korzystając z kropek CdTe, przygotowanych przez dr. Piotra Wojnara w Instytucie Fizyki PAN, w 2009 r. Mateusz Goryca z FUW zademonstrował pierwszą pamięć magnetyczną działającą na jednym jonie magnetycznym.

Powszechnie wierzono, że inne jony magnetyczne, takie jak kobalt Co2+, nie mogą być wykorzystywane w kropkach kwantowych. Mimo niekorzystnych przewidywań postanowiliśmy to sprawdzić. I tu przyroda mile nas zaskoczyła: obecność nowego jonu magnetycznego nie zepsuła własności kropki kwantowej – mówi doktorant Jakub Kobak (FUW).

Badacze z FUW zaprezentowali dwa nowe systemy z pojedynczymi jonami magnetycznymi: kropki kwantowe z tellurku kadmu z atomem kobaltu oraz kropki z selenku kadmu z atomem manganu.

Jony manganu charakteryzują się najsilniejszymi własnościami magnetycznymi. Niestety, oprócz elektronów w atomie wkład do tych własności wnosi także samo jądro atomowe. W konsekwencji kropka kwantowa z jonem manganu jest skomplikowanym układem kwantowym. Odkrycie fizyków z FUW dowodzi, że jako jony magnetyczne mogą się sprawdzić także inne pierwiastki magnetyczne, np. chrom, żelazo czy nikiel. Są one pozbawione spinu jądrowego, co oznacza, że kropki kwantowe z ich udziałem powinny być prostsze do kontrolowania.

W kropce kwantowej, w której zamiast telluru zastosowano lżejszy selen, zaobserwowano z kolei wydłużenie o rząd wielkości czasu pamiętania zapisanej informacji. Wynik ten pozwala wnioskować, że użycie lżejszych pierwiastków może wydłużyć czas przechowywania informacji przez kropki kwantowe z pojedynczymi jonami magnetycznymi – być może nawet o kilka rzędów wielkości.

Pokazaliśmy, że dwa układy kwantowe, o których sądzono, że nie powinny działać, w rzeczywistości działają bardzo dobrze. Otwieramy w ten sposób szerokie pole do poszukiwań innych, dotychczas odrzucanych kombinacji materiałów na kropki kwantowe i jony magnetyczne – podsumowuje dr Wojciech Pacuski (FUW).

Badania nad kropkami kwantowymi z pojedynczymi jonami magnetycznymi zrealizowano dzięki grantom Narodowego Centrum Nauki i Narodowego Centrum Badań i Rozwoju oraz środkom projektu Centrum Badań Przedklinicznych i Technologii (CePT).

Źródło: www.fuw.edu.pl

Strona główna Aktualności Wydarzenia Nowe kropki kwantowe zwiastują elektronikę operującą pojedynczymi atomami

Nasi partnerzy